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SECTION I SUMMARY

This program was an in-house project, to test the effectiveness of flutter control

elements on an air cushion trunk. A single inelastic trunk carcass was used throughout the

program. Individual elements were added to change the stiffness or mass of the fabric, or

to control the air flow under the trunk. The elements were tested individually and together.

None of the elements was permanently attached to the trunk: rubber cement and duct tape

were used to secure them. The motions of the trunk were observed under a variety of

pressure and ground clearance settings. Manual data collections were made. Although the

fabric used here was lighter than that used on the full-scale XC-8A aircraft tests, the

performance of this quarter-scale rig was similar to what was seen on the actual aircraft.

These passive elements did affect the amount of control force required to stop the large

amplitude heave oscillations. Based on these tests, recommendations were made to produce

a light, effective trunk system free of flutter.
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SECTION II INTRODUCTION

1.0 Objective

The objective of this test program was to measure performance changes when passive

control elements were added to a two dimensional (2D) quarter scale model of the XC-8A

Air Cushion Landing System (ACLS). See References 1; Figures 1, 2, and 3. Operating

points were established at a number of trunk pressures, and vertical clearances between the

ground plane and the hard structure. These tests were performed in-house in the Vibration

and Aeroelastic Facility of the Flight Dynamics Laboratory at Wright-Patterson AFB, Ohio.

Unlike other programs, these tests were run on a continuous flow system that permitted

time to record numerical data and to make visual observations. A single trunk was tested

alone and with the control elements added.

2.0 Background

Trunk flutter has been noted in a number of different air cushion systems. The loss

of load bearing capacity, a reduction of handling ease, and damage to the trunk fabric have

all been recorded. The high noise levels generated (116 dBa was recorded during one in-

house test) may contribute to structural fatigue and do necessitate hearing protection for

operating area personnel.

These tests examined the effect of adding fabric panels, discrete weights, a strake

perpendicular to the flow, and tread strips parallel to the flow, to the simple trunk carcass;

using bleed systems to vary trunk and cushion flow rates independently; and forcing the flow

to remain attached to the trunk panel downstream of the ground contact region. Other tests

have also studied the effect of changing the trunk hole pattern near the ground plane. This

last procedure was not pursued on the single, uniform, light weight, inelastic carcass used

for these tests. See References 2-6.
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3.0 Approach

A 2D rig (see Figure 3) was constructed in the envelope of a four (4) foot cube, built

to permit nine (9) inches of vertical adjustment of the trunk outer attachment location, and

twenty four (24) inches of horizontal adjustment of the trunk inner attachment location. The

movable floor panel could be adjusted to give zero (0) to twenty eight (28) inches of

clearance between the hard structure and the ground plane (see Figure 4).

The trunk carcass was made of Snyder NRV-1814, a nylon reinforced vinyl fabric that

weights eighteen (18) ounces per square yard (see References 7 and 8, and Appendix A).

Because of low operating pressures (0.6865 psig trunk pressure maximum), and the

materials characteristics of 1814, an elongation of 4% or less was observed (see Appendix

B). With this limited loading, the fabric was considered "inelastic": i.e., no change in physical

dimensions between the inflated and deflated states. The torsional stiffness of 1814 was

not measured, but it was observed to be low: when a pencil was placed parallel to the air

flow under the trunk, the fabric conformed easily around it when the trunk was at operating

pressures.

4.0 Fabric Motion

The general fabric motion was very dramatic. The trunk moved in rhythmic heave-

like motion slapping the ground. A maximum air gap at the center of the bag as great as

one and one-half (1-1/2) inches was seen (see Figure 5). One combination of trunk and

cushion manifold air flows set up such large motions that the entire 450 pound rig began

to walk across the cell floor. The movable floor and the bottom panel of the rig had to be

reinforced to reduce the flexing of those panels caused by the bag motion.

Node points were identified at two (2) inch intervals along a line parallel to the air

flow. Thread was sewn in lines through the node points perpendicular to the air flow, the

6



z0
00

9zz

0Z

co z

zz~

ýD7



TIME

MAXIMUM 4 -
AIR GAP

FIGURE 5. TRUNK HEAVE during FLUTTER

8



full width of the bag. These lines helped observers follow the trunk motion with a strobe

light. In all tests, ground contact varied from a tangent line at note 6, to a three (3) inch

by forty eight (48) inch strip located between notes 6 and 7-1/2, regardless of the ground

clearance to the hard structure (see Figure 6).

In addition to the large amplitude heave motion, small waves were also present in

the fabric. These waves moved from node 6 as the bag rose, reflected off the inner and

outer attachments as the bag was at its highest point, and traveled back to node 6 as the bag

dropped to the floor again. The wave that traveled to the inner joint was only visible in the

side wall sealing cuff. The wave in the outer portion was visible along the entire length of

the trunk fabric. See Reference 9, Figure 7. Only when sawtooth panels were added to the

trunk, changing the system weight and stiffness, did the pattern vary. Then the two waves

met near node 8 as the bag was rising.

9
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FIGURE 7. SMALL RIPPLE VISIBLE in OUTER TRUNK PANEL
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SECTION III ANALYTICAL MODEL

Several models of flutter have been proposed. The first examines air fabric

interaction near the ground plane. If a "negative stiffness" induced by the air flow under the

trunk exceeds the positive stiffness induced by inflation pressure, flutter will result. A

Foster-Miller Associates, Inc., computer program (see References 10 and 11) considers

variables including trunk material properties, shape, trunk and cushion flow rates, pressure

fields, ground clearances to hard structure, and active/passive control elements. An apparent

program error blocked comparisons between the program output and data recorded here.

Time did not allow for an exhaustive review of the error.

System sensitivity to operating conditions suggested above was seen during a simple

test of the 3D model in Figure 2. Under light load, flutter was located only near the fan

ducts. When the model was rolled about its longitudinal axis by pressing down on the

tubular member at the rear of the model, flutter spread until the entire trunk length was

involved. Similarly, different ground features (tall grass vs smooth concrete) have produced

different amounts of bag motion (see Reference 1). The Foster-Miller program can be

improved by including trunk and ground elements in the analysis.

Flow instability near the ground plane may feed back into the supply, and create the

negative stiffness considered above. The flow would alternately attach to the opposite side

walls, the ground and the trunk membrane. If the induced stiffness is greater than inflation

induced positive stiffness in the trunk, flutter will again occur. Forcing the air to remain

attached to the trunk well beyond the ground plane (see Figure 8) was attempted in one

test. The velcro tabs were not able to hold the panel in place under operating conditions.

If it can be used successfully, this procedure might change the foot print and cushion

pressure. A stiff panel hand held like the flexible panel in Figure 8 did reduce flutter. See

12
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Reference 12.

Finally, flutter may be attributed to vortex shedding downstream of the ground

tangent point on the inflated trunk. See Figure 6. Using the von Karman relationship for

a cylinder of diameter D (ft) measured perpendicular to the flow, the frequency of

oscillation f (Hz) may be related to the fluid velocity V (ft/sec) as:

f = 0.207 V/D

On a standard day, the velocity may be related to the cushion pressure P (psfg) by:
V = 29 FP

The normal range of Reynolds number when the von Karman model is used runs

2000-5000; these tests were completed at levels 100 times that range or higher. In the XC-

8A tests where there was good agreement, the trunk was an elastic model. As noted above,

the trunk material (NRV-1814) was in an inelastic range of loading here. See References

1 and 8, Appendix B. The error between calculated and observed frequencies increased

from 8% (for the simple trunk) to 38% (for the trunk with several control elements

attached). The inconsistent error suggests that the von Karman model is not applicable to

this program. See Reference 12.

14



SECTION IV TEST EQUIPMENT SETUP

1.0 Flutter Rig

The rig was designed for separate control of several test variables. A movable floor,

twin independent air supplies, and easily moved inner and outer attachment points were

available. A general rule suggested that the length of the trunk should be a minimum of two

and one-half (2-1/2) to three (3) diameters long (see Figure 6), when compared to the trunk

inflated out of ground effect. Test instrumentation and the rig design permitted easy

numerical and subjective observations to be made. The cushion volume was large enough

to maintain constant pressure normally assumed for an air cushion system. Because of the

rig design and the fabric mechanical properties, any change in performance may be credited

to the test article: strakes, weights, etc.

The structure was made of three quarter (3/4) inch thick A-D plywood. One side wall

was mylar coated with clear lexan plastic to permit observation and photography. The

opposite plywood wall was faced with Teflon to reduce the sliding friction with the bag. The

movable floor could be adjusted vertically with screw jacks through a range of zero (0) to

twenty eight (28) inches of clearance to the hard structure. The sides of the floor panel had

rubber strip seals installed to virtually eliminate leakage around the edges. The panel was

held against the back wall of the rig by tightening cables between two "T' channel beams

with turn buckles.

2.0 Air Supply (See Figure 9)

Unlike some other studies, these tests were run on a continuous flow system. Air was

supplied by an aftercooled Allis-Chalmers Turbo Blower, capable of 9600 cfm at 31.1 psig.

A 1500 gallon damping tank was used to eliminate supply line pressure perturbations.

Flutter has occurred with a constant pressure supply (as here) and a bladed fan supply

15
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system (see Reference 1).

Separate, identical lines fed the trunk and cushion manifolds. A two (2) inch

diameter schedule forty (40) pipe (0.154 inch thick wall), with a ball valve for flow control,

led from the damping tank, through a short expansion, into the three (3) inch diameter

schedule forty (40) pipe (0.216 inch thick wall). The metering orifice was in the three inch

line. Inside the manifold box, a series of 100, 1/4 inch diameter holes were drilled in ten

rows that were evenly spaced along the length and around the circumference of the pipe.

A parabolic entrance curve directed air smoothly and slowly (12 ft/sec at maximum flow)

into the test sections.

17



SECTION V TEST INSTRUMENTATION

1.0 Air Flow

Air flow through the system was measured in the three (3) inch line with a standard

ASME thin plate orifice equipped with D and D/2 pressure taps. A separate static tap was

several diameters upstream. The meter was built with B ratio of 0.7008. Pressure

measurements were taken from a mercury tube manometer marked in 0.1 inch increments

(see References 13 and 14).

2.0 System Pressures

Pressures in the trunk and cushion, and along the instrumentation slide in the floor

were measured on a ninety-six (96) inch water tube manometer marked in 0.1 inch

increments. An incline manometer sensitive to 0.002 inches of water was installed to look

for the point of flutter initiation. The fluid in the manometer could not follow the fast

fluctuating pressure signal, however, and all that resulted was a general stirring of the water

in the end of the manometer. The instrumentation slide could be moved through five (5)

inches of travel parallel to the air flow. Twenty-seven (27) ports were spaced at one (1) inch

intervals along the slide. The ports ranged from well in the cushion to out in the free air.

3.0 Temperature

A mercury thermometer was installed in the lid of the trunk air manifold, but violent

motions of the rig broke two of them. A temperature sensor at the blower aftercooler was

used throughout these tests. Thermometer readings ranged between 75-95°F when it was in

place. The aftercooler sensor was used to keep the air in this range throughout the program.

4.0 Visual Data Collection

A sheet of clear film was marked with a two (2) inch X-Y grid and secured to the

outside of the lexan side wall. This helped in leveling the movable floor and in tracing the

18



motion of the nodal points on the trunk.

White thread lines were sewn in the trunk carcass perpendicular to the airflow, one

line intersecting at each nodal point. The nodes were used as inputs to the Foster-Miller

program. Yarn tufts were attached near the center of the bag near the ground plane to help

monitor flow near the surface of the bag.

A General Radio model 1546 strobe light was used to observe the mode shapes and

to determine the primary frequency of heave. It was indexed in increments of one (1) cycle

per minute. It was used to freeze the motion when checking for the maximum air gap at the

center of the bag.

Very high speed movies were used to record the bag motion. An accelerometer was

attached to the center of the trunk near node 6 to precisely record the frequency and

amplitude of the motion. The violent motion quickly tore it loose and destroyed it. No

replacement was installed. This experiment with accelerometers was similar to tests on the

XC-8A aircraft.

Finally, a calibrated square was used to measure the maximum air gap under the

trunk near the center. The scale was indexed in increments of 1/16 inch.

19



SECTION VI TEST TRUNK

1.0 Trunk Carcass

The trunk carcass was made of Snyder NRV-1814, a nylon reinforced vinyl fabric that

weighs eighteen (18) ounces per square yard. The piece was of uniform construction

throughout.

The trunk material was installed with the reinforcing threads, the warp, parallel to

the flow. A row of seventeen evenly spaced cushion orifices one (1) inch in diameter was

cut at a distance of two (2) inches from the inner attachment point. The smaller trunk

orifices were cut between nodes 3 and 12, in the ground contact region. See Figure 10.

Inner and outer attachments were made by sewing a bead into the fabric, sliding a

wooden dowel into the bead, and clamping the trunk into the side of the rig with an

aluminum strip that was notched to hold the dowel. Cuffs on the ends of the bag were

adjusted with a draw string to prevent leakage along the side wall and to maintain a uniform

shape of the trunk near the ends.

2.0 Trunk Modifications

A variety of passive elements were added to the trunk. They were held in place by

velcro tabs, rubber cement, and duct tape. Tests were run to evaluate individual and

combined controls.

2.1 Sawtooth Panels (See Figure 11)

Panels of a material similar to the trunk carcass, but heavier (31 ounces per square

yard), were cut into sawtooth shapes for installation near the inner and outer attachment

points. Using an X-Y grid, sharp comers were placed at prime number intervals, i.e. 3

inches between points, 5 inches, 7 inches, etc. By using this vibration isolation technique,

any system natural frequencies can be driven to very high levels. Past experience is that

20
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FIGURE 11. SAWTOOTH PANEL MOUNTED
at OUTER ATTACHMENT POINT
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FULL WIDTH of BAG
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flutter is a "low" frequency phenomenon, 12-30 Hz. See References 1 and 12.

2.2 Strake (See Figure 12)

A single strake measuring one-half (1/2) by three-sixteenths (3/16) inches was

installed the full width of the trunk. It was situated 10-12' outside of the ground tangency

line (node 6). Yarn tufts were helpful in locating the strip.

2.3 Tread Strips (See Figure 13)

Tests indicated that ground contact ranged from a line contact at node 6, to a strip

between nodes 6 and 7-1/2, no matter what the ground clearance was. Using the OGE

radius of eight (8) inches seen in Figure 6, laminated strips were attached to the trunk

parallel to the flow, four (4) and eight (8) inches apart. The same material that was used

for the sawtooth panels (see Section 2.1) was applied in single, double, and triple layers at

the 1/2R and R spacings. The tread strips were eight (8) inches long so that they bridged

the ground contact area of the trunk. They were attached between nodes 5 and 9 in strips

one-half (1/2), three-quarters (3/4), and one (1) inch wide. No stiffener was installed to keep

the trunk from contacting the ground between the strips.

2.4 Weights

Individual, 0.12 ounce lead weights were taped to the trunk in a variety of patterns:

twenty weights were equally spaced along node 12; in combination with a single outer saw

tooth panel, as many as ten weights were taped to each point of the sawtooth panel.

23
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SECTION VII TEST SCHEDULE

1.0 Calibration

The movable floor was dropped far enough below the inflated trunk that the cushion

pressure was zero (0) inches of water gauge (out of ground effect, OGE, condition). Flow

through the trunk was tested by alternately blocking the trunk and cushion orifices. The

trunk was pressurized to the anticipated eight (8), ten (10), twelve (12), and fourteen (14)

inches of water. Flow data was recorded, the tape removed, and the floor raised for full

scale flutter tests.

Originally, flow control was to have been accomplished by choking the 100

distribution holes across the pipe in the overhead manifold box. Inadequate blower pressure

forced a change to control via the ball valve that was installed in each supply line.

With the floor raised close enough to create a cushion pressure (in ground effect,

IGE, condition) behind the trunk, testing began. At each combination of trunk pressure and

ground clearance, the flutter became much worse when secondary cushion air was added.

After a few preliminary test points, the cushion air system was blocked and not used again

during the rest of the program.

2.0 Test Sequence

Individual runs were made by adjusting the floor level and setting a trunk pressure

with no damping on the fabric. Damping was accomplished by test personnel pressing their

hands on the carcass until the large amplitude heave stopped, or, in one test sequence, by

tying a 2x4 board to the bag. This damping force varied according to the efficiency of the

pressure control element(s).

The floor was set at six (6), eight (8), and ten (10) inches of ground clearance. The

undamped trunk pressure was set at eight (8), ten (10), twelve (12), and fourteen (14)

25



inches of water, gage. A line of data included the following: pressure upstream of and across

the orifice, pressures in the trunk and cushion volumes, a Ap between the trunk and

cushion, frequency of the heave, and maximum air gap near the center of the bag. The air

temperature was checked occasionally to assure that it wasn't wandering greatly. General

comments were recorded at this time, i.e., bag contacting ground between nodes 6 and 7.

Damping was added and another line of data was taken. The air flow was only shut off long

enough to add or remove a passive control element. A record of the runs is presented in

Appendix C. Data was reduced using standard techniques. A sample flow calculation is

presented in Appendix D. See References 13 and 14.
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SECTION VIII TEST RESULTS

The performance of the trunk may be separated into three areas of interest: cushion

pressure, maximum air gap, and frequency of oscillation, as related to air flow.

1.0 Cushion Pressure

In Figure 14, the scatter of data becomes less as the ground clearance is reduced.

Damped and undamped tests at six (6) inches clearance needed 285 cfn to maintain 0.23 -

0.25 psig cushion pressure; conversely, with ten (10) inches clearance at 503.7 cfm, the

cushion pressure varied between 0.351 and 0.188 psig, a 9% load capacity vs an 87% change.

At the ten inch clearance, the amount of change in load bearing pressure in damped and

undamped tests ranged between 40% and 104% difference as the several controls were

tried.

2.0 Maximum Air Gap

The air flow - air gap relation generally follows a linear relationship, as would be

expected. In the 10 inch clearance tests, however, a condition was reached at which the

system diverges radically when undamped. Scatter of the data results from the efficiency of

the control elements. A 10-to-1 increase in air gap was noted between damped and

undamped tests with 10 inch clearance. See Figure 15.

3.0 Frequency of Oscillation

The frequency of heave oscillation shows little scatter in Figure 16. The control

elements effected the air flow but not the spring constant of the trunk carcass until sawtooth

panels (with and without weights) were added. Figure 17 suggests a spring model (see

Reference 9). Again, Figure 15 shows a change of the spring constant and damping as air

flow reached a breakaway value. The tremendous increase of air gap also saw a drop in the

frequency, therefore, internal fabric damping couldn't restrain the trunk.
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SECTION IX CONCLUSIONS AND OBSERVATIONS

1.0 Conclusions

Based on these experiments, and other similar studies, the following conclusions may

be drawn concerning trunk flutter:

1.1: Flutter is sensitive to ground plane flow/fabric tension interactions. At a given

trunk pressure, the addition of extra cushion flow will aggravate flutter.'

1.2: Passive elements will change the system operating conditions, with great

sensitivity to the clearance between the hard structure and the ground. These

elements individually or together will reduce the active control force needed to stop

flutter entirely.

1.3: Control elements that are most effective work by increasing the stiffness and/or

internal damping of the trunk carcass (sawtooth panels), act as a flow tripper to fix

the separation point (strakes) and preserve continuous flow under the trunk (tread

strips).

2.0 Observations

2.1: Flutter is not related to any air supply perturbations. The amplitude and

frequency of flutter on this 2-D rig and the bladed fan-supplied 3-D rig were of

similar magnitude.

2.2: Active control force needed varies with the efficiency of the passive elements.

The damping force generally ranged between 1-1/2 - 12-1/2 pounds. In one test with

double sawtooth panels at both attachments, the trunk did not begin to flutter until

it was slapped. It could be stopped by the pressure of one finger at the center of the

bag.

2.3: The intent of tread strips is to assure continuous flow under the bag. The flexible
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trunk material sealed around the strips, closing off the channel completely, briefly,

during several runs.

2.4: A narrow strip of the trunk is always near the ground plane, regardless of the

ground clearance or trunk pressure. The effectiveness of a strake or tread strip may

depend greatly on the flexibility of this small section of the trunk. Trunk life may

also depend on the durability of this area.

2.5: Internal damping may effect the response of the trunk. When the trunk was

inadvertently mounted so that the reinforcing threads of the NRV-1814 were skewed

from the air flow slightly, the nature of the heave changed considerably. No data was

taken as this test was set up to have the threads parallel to the flow.
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SECTION X RECOMMENDATIONS

1.0 Trunk Carcass

Internal damping may be changed dramatically by mounting the fabric so that the

reinforcing threads are on a bias.

The flexibility of the carcass should be changed near the ground plane to assure the

position of strakes and tread strips at all times. The addition of mass does change the

system, but only at a considerable weight penalty. The goal is a light weight, flutter free

system.

2.0 External Additions

Strakes, tread strips, and weights are external control elements. Further tests should

be run to see if a narrow strip of trunk carcass does stay near the ground plane regardless

of ground clearance. The durability of these elements and ease of replacement will assure

an effective trunk system. An internally formed strake (see Figure 18) may be an alternative

to the external add-ons tested here. Spacing between tread strips, and their height and width

will also effect the weight of the final trunk.

A balance between active and passive control elements will result in a compact, light

weight, durable trunk air cushion system.
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APPENDIX A

MECHANICAL PROPERTIES OF NRV-1814 as per FEDERAL TEST METHOD 191

Snyder Manufacturing Company, Ltd
Dover, OH

Initial breaking strength, Lb/1 inch wide sample 310 305
Tearing strength 105 100
Abrasion resistance, percent strength loss after 250 cycles <10 <10
Weatherometer, percent strength loss after 150 hours 0 0
Adhesion (peel resistance), Lb/2 inch wide sample 30
Stiffness, centimeters of free length 15.0
Water (hydrostatic) resistance 425
Flame retardance, maximum time after flame, seconds 5
Weight, ounces per square yard 17.1 - 19.8
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APPENDIX D: SAMPLE FLOW CALCULATION

Q=5*Y*C*A Y2**p

Where

Q Rate of Flow, ft3/min
Y Net Expansion Factor
C Flow Coefficient
A Orifice Area, in 2

g& Gravitational Constant ft-lbm / lbf sec2

Ap Pressure Change Across the Orifice, psi
p Fluid Density in the Pipe, Nom/Pt3

For Test Case 1 from the data in Appendix C:

Q = 5*(0.835)*(0.7)*(3.6305) V 2 * 32.2 * 5.4523 / 0.1310 549.3 cfn
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